SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583 **QUESTION BANK (DESCRIPTIVE) Subject with Code :** Compiler Design (16CS524) Course & Branch : B. Tech - CSE Year &Sem : III B.Tech& II-Sem **Regulation :** R16 UNIT-1 1. How many phases are there in a compiler? Explain each phase in detail? [L2, 10M] 2.a) Describe the role of lexical analysis in compiler design? [L1, 5M] b) Explain Input Buffering with simple examples? [L2, 5M] 3. Explain about Language Processor in compiler Design? [L2, 10M] 4. Explain the following terms a) Specification of Tokens [L2, 4+6M] b) Recognition of Tokens 5.a)Explain the Structure of Compiler? [L2, 5M] [L2, 5M] b) What is the need for separating lexical analysis and syntax analysis? 6. Explain LEX Tool with an Lex Programme? [L1, 10M] 7.Write short notes [L6, 5+5M] a) pass and phases of a compiler b) Bootstrapping 8. How to design the compiler by using the source program position:=intial+rate*60.[L2, 10M] 9. Write short notes [L6, 5+5M] a) Application of compiler technology b) Specification of Tokens 10 a)List the various phases of a compiler. [L1, 2M] b)Differentiate tokens, patterns, and lexeme. [L4, 2M] c) Differences between compiler and Interpreter. [L1, 2M] d)Define Regular Expressions and Regular Grammar. [L1, 2M] e) List the various error recovery strategies for a lexical analysis. [L1, 2M]

<u>UNIT-2</u>

1.a) Construct the recursive decent parse $\Gamma = \Gamma = T/T$	r for the following grammar?	[L4, 5M]
$E \rightarrow E + 1/1$		
$1 \rightarrow 1 + F/F$		
$F \rightarrow (E)/1d$		
b) Explain about Left factoring and Left	Recursion with an examples?	[L2, 5M]
2. Define augmented grammar? Construct	ct the $LR(0)$ items for the follo	wing Grammar?
S->L=R		[L1, 10M]
S->R		
L->*R		
L->1d		
R->L		
3. Calculate FIRST and FOLLOW for th	he following grammar?	[L3, 5M]
a) $E \to E + 1/T$		
$T \rightarrow T^*F/F$		
$F \rightarrow (E)/1d$		
b) S->xABC		[L3, 5M]
A->a bbD		
$B - \epsilon $		
C->b ε		
$D \rightarrow c \varepsilon$		
4. Construct Predictive Parse Table for	the grammar $E \rightarrow E + 1/1, 1 \rightarrow 1$	F/F,F->(E) and $I = 2.5 M$
5 Perform Shift Reduce Parsing for the	following	[L3, 314]
i) S->(1)]a	Tonowing	
	input string: $(2, (2, 2))$	
	input string. (a,(a,a))	[I 2 5M]
. II) $E > E + E / E^* E / (E) / Id$	input string (id*id+id)	[L3, 5W]
6. Construct CLR Parsing table for the give	en grammar	[L3, 10M]
S->CC		[,]
C->aC/d		
7 Consider the group of		EL 2 10 M
7. Consider the graninal $S > A P A P A$		[L3, 1000]
$S \rightarrow AD ADau$		
A->u E ≤h		
$D \sim 0 \varepsilon$		
D->U Construct the predictive parsing table C	how that the airrow another is	$\mathbf{II}(1)$ on rat
Construct the predictive parsing table. S	now that the given grammar is	LL(1) or not

8. Consider the grammar S->xABC

A->a|bbD

B->a|ε

C->b| ϵ

D->c $|\epsilon$

Construct predictive parsing table for the given grammar.	[L3, 10M]
9. Perform Shift Reduce Parsing for the input string using the grammar.	[L4, 5+5M]

- S->(L)|a
- L->L,S|S
- a) (a,(a,a))
- b) (a,a)

10	a) Define LL(1)?	[L1, 2M]
	b) Differences between SLR,CLR, LALR parsers?	[L1, 2M]
	c) Problems in Top Down Parsing?	[L1, 2M]
	d) Define Handle prunig?.	[L1, 2M]
	e) DefineAmbiguous grammar?	[L2, 2M]

<u>UNIT-3</u>

[L2, 10M]
[L5, 10M]
[L2, 10M]
[L2, 10M]
[L5, 10M]
[L2, 10M]
[L2, 10M]
[L6, 10M]
[L2, 10M]
[L1, 2M]
[L1, 2M]
[L1, 2M]
[L6, 2M]
[L4, 2M]

UNIT-4

 1. Draw the format of Activation Record in stack allocation and explain each field in it.
 [L4, 10M]

 2. Explain about Global data flow analysis.
 [L2, 10M]

 3. Explain theStorage Organization with simple examples.
 [L2, 10M]

 4. Define Symbol table. Explain different types of Data structure for symbol table [L1, 10M]
 5. Distinguish between static scope and dynamic scope. Briefly explain access to non-local Names in static scope.

COMPILER DESIGN

6. Ex	xplain the Non Block Structured Languages?	[L2, 10M]
7. Ex	xplain Storage allocation strategies with suitable examples?	[L2, 10M]
8. Ex	kplain heap management mechanism.	[L2, 10M]
9. Explain about block structured language.		[L6, 10M]
10	a) Define Activation Record.	[L6, 2M]
	b) Name any four procedural optimization techniques	[L6, 2M]
	c) Define scope and life time of variable.	[L1, 2M]
	d) Define symbol table.	[L1, 2M]
	e) Define data flow equation?.	[L1, 2M]

<u>UNIT-5</u>

1. Write about all issues in code generation. Describe it.	[L6, 10M]
2. Explain the target machine architecture?	[L2, 10M]
3. Explain optimization techniques on Basic Blocks with simple examples?	[L2, 10M]
4. Describe the various strategies in register allocation.	[L5, 10M]
5. Explain the peephole optimization Technique?.	[L2, 10M]
6. Construct the DAG for following statement. a+b*c+d+b*c	[L3, 10M]
7. Construct the DAG for the following basic blocks	[L3, 10M]

- 1. t1:=4*i
- 2. t2:=a[t1]
- 3. t3:=4*i
- 4. t4:=b[t3]
- 5. t5:=t2*t4
- 6. t6:=prod+t5
- 7. prod:=t6
- 8. t7:=i+1
- 9. i:=t7
- 10. if i<=20 goto 1

8. Explain the simple code generator and generate target code sequence for the followingstatement d:=(a-b)+(a-c)+(a-c)9. Write short notes on i)Simple code generator[L6, 5+5M]

- ii) Register allocation
- 10. Explain the following terms

[L1, 2M]
[L6, 2M]
[L1, 2M]
[L1, 2M]
[L1, 2M]